Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
HGG Adv ; 4(3): 100207, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37333771

RESUMO

Alzheimer disease (AD) is the most common form of senile dementia, with high incidence late in life in many populations including Caribbean Hispanic (CH) populations. Such admixed populations, descended from more than one ancestral population, can present challenges for genetic studies, including limited sample sizes and unique analytical constraints. Therefore, CH populations and other admixed populations have not been well represented in studies of AD, and much of the genetic variation contributing to AD risk in these populations remains unknown. Here, we conduct genome-wide analysis of AD in multiplex CH families from the Alzheimer Disease Sequencing Project (ADSP). We developed, validated, and applied an implementation of a logistic mixed model for admixture mapping with binary traits that leverages genetic ancestry to identify ancestry-of-origin loci contributing to AD. We identified three loci on chromosome 13q33.3 associated with reduced risk of AD, where associations were driven by Native American (NAM) ancestry. This AD admixture mapping signal spans the FAM155A, ABHD13, TNFSF13B, LIG4, and MYO16 genes and was supported by evidence for association in an independent sample from the Alzheimer's Genetics in Argentina-Alzheimer Argentina consortium (AGA-ALZAR) study with considerable NAM ancestry. We also provide evidence of NAM haplotypes and key variants within 13q33.3 that segregate with AD in the ADSP whole-genome sequencing data. Interestingly, the widely used genome-wide association study approach failed to identify associations in this region. Our findings underscore the potential of leveraging genetic ancestry diversity in recently admixed populations to improve genetic mapping, in this case for AD-relevant loci.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Loci Gênicos/genética , Etnicidade
2.
Genome Res ; 29(1): 125-134, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30514702

RESUMO

Genotype imputation is widely used in genome-wide association studies to boost variant density, allowing increased power in association testing. Many studies currently include pedigree data due to increasing interest in rare variants coupled with the availability of appropriate analysis tools. The performance of population-based (subjects are unrelated) imputation methods is well established. However, the performance of family- and population-based imputation methods on family data has been subject to much less scrutiny. Here, we extensively compare several family- and population-based imputation methods on family data of large pedigrees with both European and African ancestry. Our comparison includes many widely used family- and population-based tools and another method, Ped_Pop, which combines family- and population-based imputation results. We also compare four subject selection strategies for full sequencing to serve as the reference panel for imputation: GIGI-Pick, ExomePicks, PRIMUS, and random selection. Moreover, we compare two imputation accuracy metrics: the Imputation Quality Score and Pearson's correlation R 2 for predicting power of association analysis using imputation results. Our results show that (1) GIGI outperforms Merlin; (2) family-based imputation outperforms population-based imputation for rare variants but not for common ones; (3) combining family- and population-based imputation outperforms all imputation approaches for all minor allele frequencies; (4) GIGI-Pick gives the best selection strategy based on the R 2 criterion; and (5) R 2 is the best measure of imputation accuracy. Our study is the first to extensively evaluate the imputation performance of many available family- and population-based tools on the same family data and provides guidelines for future studies.


Assuntos
População Negra/genética , Família , Genoma Humano , População Branca/genética , Feminino , Humanos , Masculino
3.
Genomics ; 111(4): 808-818, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29857119

RESUMO

The Alzheimer's Disease Sequencing Project (ADSP) performed whole genome sequencing (WGS) of 584 subjects from 111 multiplex families at three sequencing centers. Genotype calling of single nucleotide variants (SNVs) and insertion-deletion variants (indels) was performed centrally using GATK-HaplotypeCaller and Atlas V2. The ADSP Quality Control (QC) Working Group applied QC protocols to project-level variant call format files (VCFs) from each pipeline, and developed and implemented a novel protocol, termed "consensus calling," to combine genotype calls from both pipelines into a single high-quality set. QC was applied to autosomal bi-allelic SNVs and indels, and included pipeline-recommended QC filters, variant-level QC, and sample-level QC. Low-quality variants or genotypes were excluded, and sample outliers were noted. Quality was assessed by examining Mendelian inconsistencies (MIs) among 67 parent-offspring pairs, and MIs were used to establish additional genotype-specific filters for GATK calls. After QC, 578 subjects remained. Pipeline-specific QC excluded ~12.0% of GATK and 14.5% of Atlas SNVs. Between pipelines, ~91% of SNV genotypes across all QCed variants were concordant; 4.23% and 4.56% of genotypes were exclusive to Atlas or GATK, respectively; the remaining ~0.01% of discordant genotypes were excluded. For indels, variant-level QC excluded ~36.8% of GATK and 35.3% of Atlas indels. Between pipelines, ~55.6% of indel genotypes were concordant; while 10.3% and 28.3% were exclusive to Atlas or GATK, respectively; and ~0.29% of discordant genotypes were. The final WGS consensus dataset contains 27,896,774 SNVs and 3,133,926 indels and is publicly available.


Assuntos
Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla/normas , Técnicas de Genotipagem/normas , Controle de Qualidade , Sequenciamento Completo do Genoma/normas , Algoritmos , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Técnicas de Genotipagem/métodos , Humanos , Masculino , Polimorfismo Genético , Sequenciamento Completo do Genoma/métodos
4.
Genet Epidemiol ; 42(6): 500-515, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29862559

RESUMO

Multipoint linkage analysis is an important approach for localizing disease-associated loci in pedigrees. Linkage analysis, however, is sensitive to misspecification of marker allele frequencies. Pedigrees from recently admixed populations are particularly susceptible to this problem because of the challenge of accurately accounting for population structure. Therefore, increasing emphasis on use of multiethnic samples in genetic studies requires reevaluation of best practices, given data currently available. Typical strategies have been to compute allele frequencies from the sample, or to use marker allele frequencies determined by admixture proportions averaged over the entire sample. However, admixture proportions vary among pedigrees and throughout the genome in a family-specific manner. Here, we evaluate several approaches to model admixture in linkage analysis, providing different levels of detail about ancestral origin. To perform our evaluations, for specification of marker allele frequencies, we used data on 67 Caribbean Hispanic admixed families from the Alzheimer's Disease Sequencing Project. Our results show that choice of admixture model has an effect on the linkage analysis results. Variant-specific admixture proportions, computed for individual families, provide the most detailed regional admixture estimates, and, as such, are the most appropriate allele frequencies for linkage analysis. This likely decreases the number of false-positive results, and is straightforward to implement.


Assuntos
Doença de Alzheimer/genética , Pool Gênico , Hispânico ou Latino/genética , Linhagem , Filogenia , Análise de Sequência de DNA , Região do Caribe , Etnicidade , Família , Feminino , Frequência do Gene/genética , Ligação Genética , Genética Populacional , Humanos , Escore Lod , Masculino , Modelos Genéticos , Análise de Componente Principal
5.
Dement Geriatr Cogn Disord ; 45(1-2): 1-17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29486463

RESUMO

BACKGROUND/AIMS: The Alzheimer's Disease Sequencing Project (ADSP) aims to identify novel genes influencing Alzheimer's disease (AD). Variants within genes known to cause dementias other than AD have previously been associated with AD risk. We describe evidence of co-segregation and associations between variants in dementia genes and clinically diagnosed AD within the ADSP. METHODS: We summarize the properties of known pathogenic variants within dementia genes, describe the co-segregation of variants annotated as "pathogenic" in ClinVar and new candidates observed in ADSP families, and test for associations between rare variants in dementia genes in the ADSP case-control study. The participants were clinically evaluated for AD, and they represent European, Caribbean Hispanic, and isolate Dutch populations. RESULTS/CONCLUSIONS: Pathogenic variants in dementia genes were predominantly rare and conserved coding changes. Pathogenic variants within ARSA, CSF1R, and GRN were observed, and candidate variants in GRN and CHMP2B were nominated in ADSP families. An independent case-control study provided evidence of an association between variants in TREM2, APOE, ARSA, CSF1R, PSEN1, and MAPT and risk of AD. Variants in genes which cause dementing disorders may influence the clinical diagnosis of AD in a small proportion of cases within the ADSP.


Assuntos
Doença de Alzheimer/genética , Demência/genética , Proteínas do Tecido Nervoso/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/epidemiologia , Estudos de Casos e Controles , Estudos de Coortes , Demência/epidemiologia , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Prevalência , Análise de Sequência de DNA
6.
Bioinformatics ; 34(9): 1591-1593, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29267877

RESUMO

Summary: Genome-wide association studies have become common over the last ten years, with a shift towards targeting rare variants, especially in pedigree-data. Despite lower costs, sequencing for rare variants still remains expensive. To have a relatively large sample with acceptable cost, imputation approaches may be used, such as GIGI for pedigree data. GIGI is an imputation method that handles large pedigrees and is particularly good for rare variant imputation. GIGI requires a subset of individuals in a pedigree to be fully sequenced, while other individuals are sequenced only at relevant markers. The imputation will infer the missing genotypes at untyped markers. Running GIGI on large pedigrees for large numbers of markers can be very time consuming. We present GIGI-Quick as a method to efficiently split GIGI's input, run GIGI in parallel and efficiently merge the output to reduce the runtime with the number of cores. This allows obtaining imputation results faster, and therefore all subsequent association analyses. Availability and and implementation: GIGI-Quick is open source and publicly available via: https://cse-git.qcri.org/Imputation/GIGI-Quick. Contact: msaad@hbku.edu.qa. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Estudo de Associação Genômica Ampla , Genótipo , Linhagem , Software
7.
BMC Proc ; 10(Suppl 7): 295-301, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27980652

RESUMO

BACKGROUND: In the past few years, imputation approaches have been mainly used in population-based designs of genome-wide association studies, although both family- and population-based imputation methods have been proposed. With the recent surge of family-based designs, family-based imputation has become more important. Imputation methods for both designs are based on identity-by-descent (IBD) information. Apart from imputation, the use of IBD information is also common for several types of genetic analysis, including pedigree-based linkage analysis. METHODS: We compared the performance of several family- and population-based imputation methods in large pedigrees provided by Genetic Analysis Workshop 19 (GAW19). We also evaluated the performance of a new IBD mapping approach that we propose, which combines IBD information from known pedigrees with information from unrelated individuals. RESULTS: Different combinations of the imputation methods have varied imputation accuracies. Moreover, we showed gains from the use of both known pedigrees and unrelated individuals with our IBD mapping approach over the use of known pedigrees only. CONCLUSIONS: Our results represent accuracies of different combinations of imputation methods that may be useful for data sets similar to the GAW19 pedigree data. Our IBD mapping approach, which uses both known pedigree and unrelated individuals, performed better than classical linkage analysis.

8.
BMC Proc ; 10(Suppl 7): 357-362, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27980662

RESUMO

BACKGROUND: Estimating relationships among subjects in a sample, within family structures or caused by population substructure, is complicated in admixed populations. Inaccurate allele frequencies can bias both kinship estimates and tests for association between subjects and a phenotype. We analyzed the simulated and real family data from Genetic Analysis Workshop 19, and were aware of the simulation model. RESULTS: We found that kinship estimation is more accurate when marker data include common variants whose frequencies are less variable across populations. Estimates of heritability and association vary with age for longitudinally measured traits. Accounting for local ancestry identified different true associations than those identified by a traditional approach. Principal components aid kinship estimation and tests for association, but their utility is influenced by the frequency of the markers used to generate them. CONCLUSIONS: Admixed families can provide a powerful resource for detecting disease loci, as well as analytical challenges. Allele frequencies, although difficult to adequately estimate in admixed populations, have a strong impact on the estimation of kinship, ancestry, and association with phenotypes. Approaches that acknowledge population structure in admixed families outperform those which ignore it.

9.
PLoS One ; 11(4): e0153864, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27120335

RESUMO

Childhood apraxia of speech (CAS) is a severe and socially debilitating form of speech sound disorder with suspected genetic involvement, but the genetic etiology is not yet well understood. Very few known or putative causal genes have been identified to date, e.g., FOXP2 and BCL11A. Building a knowledge base of the genetic etiology of CAS will make it possible to identify infants at genetic risk and motivate the development of effective very early intervention programs. We investigated the genetic etiology of CAS in two large multigenerational families with familial CAS. Complementary genomic methods included Markov chain Monte Carlo linkage analysis, copy-number analysis, identity-by-descent sharing, and exome sequencing with variant filtering. No overlaps in regions with positive evidence of linkage between the two families were found. In one family, linkage analysis detected two chromosomal regions of interest, 5p15.1-p14.1, and 17p13.1-q11.1, inherited separately from the two founders. Single-point linkage analysis of selected variants identified CDH18 as a primary gene of interest and additionally, MYO10, NIPBL, GLP2R, NCOR1, FLCN, SMCR8, NEK8, and ANKRD12, possibly with additive effects. Linkage analysis in the second family detected five regions with LOD scores approaching the highest values possible in the family. A gene of interest was C4orf21 (ZGRF1) on 4q25-q28.2. Evidence for previously described causal copy-number variations and validated or suspected genes was not found. Results are consistent with a heterogeneous CAS etiology, as is expected in many neurogenic disorders. Future studies will investigate genome variants in these and other families with CAS.


Assuntos
Apraxias/genética , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Fala/fisiologia , Exoma/genética , Feminino , Ligação Genética/genética , Genótipo , Humanos , Escore Lod , Masculino , Linhagem , Risco
10.
Bioinformatics ; 31(23): 3790-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26231429

RESUMO

MOTIVATION: Huge genetic datasets with dense marker panels are now common. With the availability of sequence data and recognition of importance of rare variants, smaller studies based on pedigrees are again also common. Pedigree-based samples often start with a dense marker panel, a subset of which may be used for linkage analysis to reduce computational burden and to limit linkage disequilibrium between single-nucleotide polymorphisms (SNPs). Programs attempting to select markers for linkage panels exist but lack flexibility. RESULTS: We developed a pedigree-based analysis pipeline (PBAP) suite of programs geared towards SNPs and sequence data. PBAP performs quality control, marker selection and file preparation. PBAP sets up files for MORGAN, which can handle analyses for small and large pedigrees, typically human, and results can be used with other programs and for downstream analyses. We evaluate and illustrate its features with two real datasets. AVAILABILITY AND IMPLEMENTATION: PBAP scripts may be downloaded from http://faculty.washington.edu/wijsman/software.shtml. CONTACT: wijsman@uw.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Transtorno do Espectro Autista/genética , Ligação Genética , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único/genética , Software , Feminino , Humanos , Desequilíbrio de Ligação , Masculino , Linhagem , Controle de Qualidade
11.
Hum Genet ; 134(10): 1055-68, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26204995

RESUMO

Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders, characterized by impairment in communication and social interactions, and by repetitive behaviors. ASDs are highly heritable, and estimates of the number of risk loci range from hundreds to >1000. We considered 7 extended families (size 12-47 individuals), each with ≥3 individuals affected by ASD. All individuals were genotyped with dense SNP panels. A small subset of each family was typed with whole exome sequence (WES). We used a 3-step approach for variant identification. First, we used family-specific parametric linkage analysis of the SNP data to identify regions of interest. Second, we filtered variants in these regions based on frequency and function, obtaining exactly 200 candidates. Third, we compared two approaches to narrowing this list further. We used information from the SNP data to impute exome variant dosages into those without WES. We regressed affected status on variant allele dosage, using pedigree-based kinship matrices to account for relationships. The p value for the test of the null hypothesis that variant allele dosage is unrelated to phenotype was used to indicate strength of evidence supporting the variant. A cutoff of p = 0.05 gave 28 variants. As an alternative third filter, we required Mendelian inheritance in those with WES, resulting in 70 variants. The imputation- and association-based approach was effective. We identified four strong candidate genes for ASD (SEZ6L, HISPPD1, FEZF1, SAMD11), all of which have been previously implicated in other studies, or have a strong biological argument for their relevance.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas do Olho/genética , Proteínas de Membrana/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fatores de Transcrição/genética , Exoma , Feminino , Frequência do Gene , Genes Dominantes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Masculino , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras , Análise de Sequência de DNA
12.
Dev Biol ; 402(1): 17-31, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25753732

RESUMO

The vacuolated lens (vl) mouse mutation arose on the C3H/HeSnJ background and results in lethality, neural tube defects (NTDs) and cataracts. The vl phenotypes are due to a deletion/frameshift mutation in the orphan GPCR, Gpr161. A recent study using a null allele demonstrated that Gpr161 functions in primary cilia and represses the Shh pathway. We show the hypomorphic Gpr161(vl) allele does not severely affect the Shh pathway. To identify additional pathways regulated by Gpr161 during neurulation, we took advantage of naturally occurring genetic variation in the mouse. Previously Gpr161(vl-C3H) was crossed to different inbred backgrounds including MOLF/EiJ and the Gpr161(vl) mutant phenotypes were rescued. Five modifiers were mapped (Modvl: Modifier of vl) including Modvl5(MOLF). In this study we demonstrate the Modvl5(MOLF) congenic rescues the Gpr161(vl)-associated lethality and NTDs but not cataracts. Bioinformatics determined the transcription factor, Cdx1, is the only annotated gene within the Modvl5 95% CI co-expressed with Gpr161 during neurulation and not expressed in the eye. Using Cdx1 as an entry point, we identified the retinoid acid (RA) and canonical Wnt pathways as downstream targets of Gpr161. QRT-PCR, ISH and IHC determined that expression of RA and Wnt genes are down-regulated in Gpr161(vl/vl) but rescued by the Modvl5(MOLF) congenic during neurulation. Intraperitoneal RA injection restores expression of canonical Wnt markers and rescues Gpr161(vl/vl) NTDs. These results establish the RA and canonical Wnt as pathways downstream of Gpr161 during neurulation, and suggest that Modvl5(MOLF) bypasses the Gpr161(vl) mutation by restoring the activity of these pathways.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurulação , Receptores Acoplados a Proteínas G/metabolismo , Tretinoína/metabolismo , Proteínas Wnt/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Genes Reporter , Variação Genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Defeitos do Tubo Neural/genética , Fenótipo , Locos de Características Quantitativas , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , Via de Sinalização Wnt , Proteína Wnt3A/metabolismo
13.
BMC Proc ; 8(Suppl 1 Genetic Analysis Workshop 18Vanessa Olmo): S81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25519410

RESUMO

Most association studies focus on disease risk, with less attention paid to disease progression or severity. These phenotypes require longitudinal data. This paper presents a new method for analyzing longitudinal data to map genes in both population-based and family-based studies. Using simulated systolic blood pressure measurements obtained from Genetic Analysis Workshop 18, we cluster the phenotype data into trajectory subgroups. We then use the Bayesian posterior probability of being in the high subgroup as a quantitative trait in an association analysis with genotype data. This method maintains high power (>80%) in locating genes known to affect the simulated phenotype for most specified significance levels (α). We believe that this method can be useful to aid in the discovery of genes that affect severity or progression of disease.

14.
Hum Genet ; 132(12): 1427-31, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24100633

RESUMO

Genome-wide association studies (GWAS) have identified many variants that influence high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and/or triglycerides. However, environmental modifiers, such as smoking, of these known genotype-phenotype associations are just recently emerging in the literature. We have tested for interactions between smoking and 49 GWAS-identified variants in over 41,000 racially/ethnically diverse samples with lipid levels from the Population Architecture Using Genomics and Epidemiology (PAGE) study. Despite their biological plausibility, we were unable to detect significant SNP × smoking interactions.


Assuntos
Etnicidade/genética , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Metabolismo dos Lipídeos/genética , Polimorfismo de Nucleotídeo Único , Fumar/genética , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Estudos de Coortes , Feminino , Frequência do Gene , Genética Populacional , Humanos , Masculino , Prevalência , Fumar/epidemiologia , Fumar/etnologia , Fumar/metabolismo , Triglicerídeos/metabolismo , Adulto Jovem
15.
Ann Hum Genet ; 77(5): 416-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23808484

RESUMO

Numerous common genetic variants that influence plasma high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglyceride distributions have been identified via genome-wide association studies (GWAS). However, whether or not these associations are age-dependent has largely been overlooked. We conducted an association study and meta-analysis in more than 22,000 European Americans between 49 previously identified GWAS variants and the three lipid traits, stratified by age (males: <50 or ≥50 years of age; females: pre- or postmenopausal). For each variant, a test of heterogeneity was performed between the two age strata and significant Phet values were used as evidence of age-specific genetic effects. We identified seven associations in females and eight in males that displayed suggestive heterogeneity by age (Phet < 0.05). The association between rs174547 (FADS1) and LDL-C in males displayed the most evidence for heterogeneity between age groups (Phet = 1.74E-03, I(2) = 89.8), with a significant association in older males (P = 1.39E-06) but not younger males (P = 0.99). However, none of the suggestive modifying effects survived adjustment for multiple testing, highlighting the challenges of identifying modifiers of modest SNP-trait associations despite large sample sizes.


Assuntos
Estudo de Associação Genômica Ampla , Lipídeos/sangue , Locos de Características Quantitativas , Característica Quantitativa Herdável , Adulto , Idoso , Dessaturase de Ácido Graxo Delta-5 , Feminino , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco , População Branca/genética
16.
Atherosclerosis ; 228(2): 390-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23587283

RESUMO

BACKGROUND: A number of genetic variants have been discovered by recent genome-wide association studies for their associations with clinical coronary heart disease (CHD). However, it is unclear whether these variants are also associated with the development of CHD as measured by subclinical atherosclerosis phenotypes, ankle brachial index (ABI), carotid artery intima-media thickness (cIMT) and carotid plaque. METHODS: Ten CHD risk single nucleotide polymorphisms (SNPs) were genotyped in individuals of European American (EA), African American (AA), American Indian (AI), and Mexican American (MA) ancestry in the Population Architecture using Genomics and Epidemiology (PAGE) study. In each individual study, we performed linear or logistic regression to examine population-specific associations between SNPs and ABI, common and internal cIMT, and plaque. The results from individual studies were meta-analyzed using a fixed effect inverse variance weighted model. RESULTS: None of the ten SNPs was significantly associated with ABI and common or internal cIMT, after Bonferroni correction. In the sample of 13,337 EA, 3809 AA, and 5353 AI individuals with carotid plaque measurement, the GCKR SNP rs780094 was significantly associated with the presence of plaque in AI only (OR = 1.32, 95% confidence interval: 1.17, 1.49, P = 1.08 × 10(-5)), but not in the other populations (P = 0.90 in EA and P = 0.99 in AA). A 9p21 region SNP, rs1333049, was nominally associated with plaque in EA (OR = 1.07, P = 0.02) and in AI (OR = 1.10, P = 0.05). CONCLUSIONS: We identified a significant association between rs780094 and plaque in AI populations, which needs to be replicated in future studies. There was little evidence that the index CHD risk variants identified through genome-wide association studies in EA influence the development of CHD through subclinical atherosclerosis as assessed by cIMT and ABI across ancestries.


Assuntos
Doenças das Artérias Carótidas/epidemiologia , Doenças das Artérias Carótidas/genética , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Polimorfismo de Nucleotídeo Único , Negro ou Afro-Americano/genética , Idoso , Índice Tornozelo-Braço , Doenças Assintomáticas , Doenças das Artérias Carótidas/diagnóstico , Doenças das Artérias Carótidas/etnologia , Espessura Intima-Media Carotídea , Doença das Coronárias/diagnóstico , Doença das Coronárias/etnologia , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Indígenas Norte-Americanos/genética , Modelos Lineares , Modelos Logísticos , Masculino , Americanos Mexicanos/genética , Pessoa de Meia-Idade , Razão de Chances , Fenótipo , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Estados Unidos/epidemiologia , População Branca/genética
17.
Hum Hered ; 74(3-4): 172-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23594495

RESUMO

As with any new technology, next-generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to those data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have lower power than the corresponding single-variant simulation results, most probably due to our specification of multi-variant SNP correlation values. In conclusion, our LTTae,NGS addresses two key challenges with NGS disease studies; first, it allows for differential misclassification when computing the statistic; and second, it addresses the multiple-testing issue in that there is a multi-variant form of the statistic that has only one degree of freedom, and provides a single p value, no matter how many loci.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Modelos Genéticos , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único , Simulação por Computador , Humanos , Projetos de Pesquisa , Análise de Sequência de DNA
18.
Mol Biol Evol ; 24(3): 687-98, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17175528

RESUMO

The population genetic history of a 10.1-kbp noncoding region of the human X chromosome was studied using the males of the HGDP-CEPH Human Genome Diversity Panel (672 individuals from 52 populations). The geographic distribution of patterns of variation was roughly consistent with previous studies, with the major exception that 1 highly divergent haplotype (haplotype X, hX) was observed at low frequency in widely scattered non-African populations and not at all observed in sub-Saharan African populations. Microsatellite (short tandem repeat) variation within the sequenced region was low among copies of hX, even though the estimated time of ancestry of hX and other sequences was 1.44 Myr. The estimated age of the common ancestor of all hX copies was 5,230 years (95% consistency index: 2,000-75,480 years). To further address the presence of hX in Africa, additional samples from Chad and Tanzania were screened. Five additional copies of hX were observed, consistent with a history in which hX was present in Africa prior to the migration of modern humans out of Africa and with eastern Africa being the source of non-African modern human populations. Taken together, these features of hX-that it is much older than other haplotypes and uncommon and patchily distributed throughout Africa, Europe, and Asia-present a cautionary tale for interpretations of human history.


Assuntos
Cromossomos Humanos X/genética , Evolução Molecular , Variação Genética , Genética Populacional , Haplótipos/genética , Filogenia , Primers do DNA , Bases de Dados Genéticas , Demografia , Genótipo , Humanos , Masculino , Repetições de Microssatélites/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...